These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations. Author: Hillman F, Brito J, Jeong HK. Journal: ACS Appl Mater Interfaces; 2018 Feb 14; 10(6):5586-5593. PubMed ID: 29350515. Abstract: The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.[Abstract] [Full Text] [Related] [New Search]