These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization.
    Author: Lu GY, Wang WX.
    Journal: Sci Total Environ; 2018 Jun 01; 626():307-318. PubMed ID: 29353779.
    Abstract:
    Metal contamination is one of the most ubiquitous and complex problems in the Chinese coastal environment. To explore the large-scale spatial patterns of bioavailable metals, we sampled three major mussels, including 784 blue mussels (Mytilus edulis Linnaeus, 1758) of 14 sites, 224 hard-shelled mussels (Mytilus unguiculatus Valenciennes, 1858) of 4 sites, and 392 green mussels (Perna viridis (Linnaeus, 1758)) of 7 sites, ranging from temperate to tropical coastlines of China, during August and September 2015. The concentrations of macroelements (Na, K, Ca, Mg, and P) and toxic trace metals (Ag, Cd, Cr, Cu, Ni, Pb, Ti, and Zn) in the mussel's whole soft tissues were determined. Among the four Chinese coastal basins, Cd, Ti and Cr in the mussel tissues were the highest at Bohai Sea (BS) and Yellow Sea (YS), and Cu, Ni, Pb and Ag in the mussel tissues were the highest at East China Sea (ECS) and South China Sea (SCS). Zinc concentrations in mussels from YS were significantly higher than those from the other regions. Given the variability of environmental conditions such as salinity and nutrients, we further normalized the measured tissue metal concentrations with tissue Na and P levels. After Na normalization as the salinity proxy, the variability of Cd, Cu, Zn, Ag, and Ni was reduced. Trace elements accumulation in the mussel tissues was significantly related to both macroelements (Na or P) and body dry weight. The present study demonstrated that nonlinear optimization of different elements was necessary in assessing metal bioaccumulation patterns in marine mussels at a large spatial scale.
    [Abstract] [Full Text] [Related] [New Search]