These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains.
    Author: Tomasek K, Bergmiller T, Guet CC.
    Journal: J Biotechnol; 2018 Feb 20; 268():40-52. PubMed ID: 29355812.
    Abstract:
    Buffers are essential for diluting bacterial cultures for flow cytometry analysis in order to study bacterial physiology and gene expression parameters based on fluorescence signals. Using a variety of constitutively expressed fluorescent proteins in Escherichia coli K-12 strain MG1655, we found strong artifactual changes in fluorescence levels after dilution into the commonly used flow cytometry buffer phosphate-buffered saline (PBS) and two other buffer solutions, Tris-HCl and M9 salts. These changes appeared very rapidly after dilution, and were linked to increased membrane permeability and loss in cell viability. We observed buffer-related effects in several different E. coli strains, K-12, C and W, but not E. coli B, which can be partially explained by differences in lipopolysaccharide (LPS) and outer membrane composition. Supplementing the buffers with divalent cations responsible for outer membrane stability, Mg2+ and Ca2+, preserved fluorescence signals, membrane integrity and viability of E. coli. Thus, stabilizing the bacterial outer membrane is essential for precise and unbiased measurements of fluorescence parameters using flow cytometry.
    [Abstract] [Full Text] [Related] [New Search]