These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Median and Dorsal Raphe Serotonergic Neurons Control Moderate Versus Compulsive Cocaine Intake.
    Author: Verheij MMM, Contet C, Karel P, Latour J, van der Doelen RHA, Geenen B, van Hulten JA, Meyer F, Kozicz T, George O, Koob GF, Homberg JR.
    Journal: Biol Psychiatry; 2018 Jun 15; 83(12):1024-1035. PubMed ID: 29357981.
    Abstract:
    BACKGROUND: Reduced expression of the serotonin transporter (SERT) promotes anxiety and cocaine intake in both humans and rats. We tested the hypothesis that median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) serotonergic projections differentially mediate these phenotypes. METHODS: We used virally mediated RNA interference to locally downregulate SERT expression and compared the results with those of constitutive SERT knockout. Rats were allowed either short access (ShA) (1 hour) or long access (LgA) (6 hours) to cocaine self-administration to model moderate versus compulsive-like cocaine taking. RESULTS: SERT knockdown in the MRN increased cocaine intake selectively under ShA conditions and, like ShA cocaine self-administration, reduced corticotropin-releasing factor (CRF) immunodensity in the paraventricular nucleus of the hypothalamus. In contrast, SERT knockdown in the DRN increased cocaine intake selectively under LgA conditions and, like LgA cocaine self-administration, reduced CRF immunodensity in the central nucleus of the amygdala. SERT knockdown in the MRN or DRN produced anxiety-like behavior, as did withdrawal from ShA or LgA cocaine self-administration. The phenotype of SERT knockout rats was a summation of the phenotypes generated by MRN- and DRN-specific SERT knockdown. CONCLUSIONS: Our results highlight a differential role of serotonergic projections arising from the MRN and DRN in the regulation of cocaine intake. We propose that a cocaine-induced shift from MRN-driven serotonergic control of CRF levels in the hypothalamus to DRN-driven serotonergic control of CRF levels in the amygdala may contribute to the transition from moderate to compulsive intake of cocaine.
    [Abstract] [Full Text] [Related] [New Search]