These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of coenzyme structure on the transient chemical intermediate formed during horse-liver alcohol-dehydrogenase-catalyzed reduction of aromatic aldehydes.
    Author: Torreilles J, Guerin MC.
    Journal: Biochim Biophys Acta; 1986 Feb 14; 869(3):265-74. PubMed ID: 2936396.
    Abstract:
    The influence of coenzyme structure on the transient chemical intermediate formed in the reaction between the horse-liver alcohol dehydrogenase-NADH complex and an aromatic aldehyde such as 4-trans-(N,N-dimethylamino)cinnamaldehyde or 4-(N,N-dimethylamino)benzaldehyde was investigated by substituting various adenylic dinucleotides for NADH. Two classes of dinucleotide were studied. (a) Dinucleotides which, in the presence of horse-liver alcohol dehydrogenase and either 4-(N,N-dimethylamino)benzaldehyde or 4-trans-(N,N-dimethylamino)cinnamaldehyde, lead to a chromophore structurally analogous to the transient chemical intermediate formed with NADH under the same experimental conditions. This includes dinucleotides with a neutral 1,4-dihydropyridine ring, analogues of NADH and adducts of NAD+ (or analogues) with enolizable carbonyl compounds. (b) Dinucleotides which, under the same experimental conditions, do not form any new chromophores when mixed with horse-liver alcohol dehydrogenase and either 4-trans-(N,N-dimethylamino)cinnamaldehyde or 4-trans-(N,N-dimethylamino)benzaldehyde. This includes oxidized coenzyme analogues, NADPH and NADP+ adducts. Our data suggest that a neutral 1,4-dihydropyridine ring is crucial for the formation of the transient chemical intermediate. When the NAD+-sulphite complex, which has a 1,4-dihydronicotinamide structure and a positive charge at position 4 neutralized by sulphite ions, was substituted for NADH, the transient chemical intermediate chromophore was observed. The implications of this phenomenon are examined by assuming the existence of intermediate-activated forms of substrates and coenzymes during the horse-liver alcohol dehydrogenase catalytic reduction of aldehydes.
    [Abstract] [Full Text] [Related] [New Search]