These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein synthesis in rabbit reticulocytes: characteristics of a postribosomal supernatant factor that reverses inhibition of protein synthesis in heme-deficient lysates and inhibition of ternary complex (Met-tRNAfMet.eIF-2.GTP) formation by heme-regulated inhibitor.
    Author: Ralston RO, Das A, Grace M, Das H, Gupta NK.
    Journal: Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5490-4. PubMed ID: 293657.
    Abstract:
    During heme deficiency in reticulocyte lysates, a translational inhibitor (heme-regulated inhibitor, HRI) that blocks polypeptide chain initiation is activated. HRI is a protein kinase that specifically phosphorylates the 38,000-dalton subunit of the Met-tRNAfMet binding factor, eIF-2. Phosphorylation of eIF-2 by HRI prevents its interaction with at least two additional factors, resulting in a net reduction in formation of ternary complex (Met-tRNAfMet.eIF-2.GTP) and AUG-dependent transfer of Met-tRNAfMet to 40S ribosomal subunits. A factor (sRF) that reverses protein synthesis inhibition in heme-deficient lysates has been purified from reticulocyte postribosomal supernatant. sRF also reverses the inhibition of ternary complex formation by HRI in a fractionated system. The ternary complex inhibition reversal activity and the protein synthesis inhibition reversal activity cosediment at 12.5 S upon glycerol density gradient centrifugation, and both activities are sensitive to heat or N-ethylmaleimide. Purified sRF does not dephosphorylate eIF-2 whose phosphorylation has been catalyzed by HRI, nor does the sRF prevent the phosphorylation of eIF-2 by HRI in a fractionated system. sRF stimulates ternary complex formation by both phosphorylated and nonphosphorylated eIF-2. These observations suggest that the sensitivity of protein synthesis to phosphorylation of eIF-2 by HRI may be modulated by the concentration and activity of sRF.
    [Abstract] [Full Text] [Related] [New Search]