These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells.
    Author: Papayannopoulou T, Kalmantis T, Stamatoyannopoulos G.
    Journal: Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6420-4. PubMed ID: 293729.
    Abstract:
    To investigate whether the level of maturity of human erythroid cells influences the expression of the fetal hemoglobin program, we studied the relative production of fetal (Hb F) and adult (Hb A) hemoglobins during the maturation of erythroid clones produced in vitro by adult or neonatal erythroid stem cells. In both the adult and the neonatal cell cultures, clones composed of immature erythroblasts showed a significantly higher Hb F/Hb A ratio compared to the mature clones. Culture conditions enhancing erythroid cell maturity (such as an increase in the level of erythropoietin or culture time) decreased the relative synthesis of Hb F in the maturing erythroid cells. Direct immunofluorescence studies demonstrated earlier production of Hb F compared with Hb A during maturation of adult-origin HbF-synthesizing clones. The findings show that the final expression of Hb F is influenced by the degree of maturity of the terminally differentiated cells and suggest that, in addition to regulation at the level of erythroid stem cells, there is control of Hb F expression during erythroblast maturation. The inverse relationship between Hb F expression and level of cell maturity suggests that a regulatory mechanism operating throughout the process of erythroid stem cell differentiation/erythroblast maturation decreases the potential of Hb F expression as the development of the erythroid cell advances.
    [Abstract] [Full Text] [Related] [New Search]