These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiR-145 improves macrophage-mediated inflammation through targeting Arf6.
    Author: Li R, Shen Q, Wu N, He M, Liu N, Huang J, Lu B, Yao Q, Yang Y, Hu R.
    Journal: Endocrine; 2018 Apr; 60(1):73-82. PubMed ID: 29388044.
    Abstract:
    PURPOSE: To explore the relationship between miR-145 and ADP ribosylation factor 6 (Arf6) in regulating macrophage-mediated inflammation. METHODS: THP-1 cells were induced by 160 nM of phorbol 12-myristate 13-acetate (PMA) for 48 h to differentiate to macrophages and then were treated with LPS (100 ng/ml) for 8 h to simulate chronic metabolic inflammation in vitro. Dual-luciferase reporter assay was performed. MiR-145 siRNA and LV-ARF6-RNAi were used to up or down regulate miR-145 and Arf6 expression in THP-1 cells, respectively. Omental adipose tissue from patients in surgical ward were collected to detect the expression of miR-145, Arf6 and production of proinflammatory cytokines. Patients were divided into three groups according to their body mass index and history of diabetes. RESULTS: Dual-luciferase reporter assays showed the direct down-regulation of Arf6 by miR-145. Forty-eight-hour-transfection of miR-145 inhibitor resulted in significant increase of Arf6, IL-1beta, TNF-alpha and IL-6 as well as phosphorylation of p65 in NF-kappaB pathway in THP-1 cells, which, inversely, were reversed by overexpressing miR-145. In addition, down-regulation of Arf6 in macrophages reduced expression and secretion of cytokines. Expression of miR-145 was found to be attenuated in the omental adipose tissue of obese patients and diabetics with greater Arf6 expression, confirming the role of miR-145 in regulating macrophage-mediated inflammation targeting Arf6. CONCLUSIONS: By means of reducing the expression of Arf6 and subsequent signal transduction via NF-kappaB, miR-145 plays a role in inhibiting the secretion of inflammatory factors and then improving the inflammatory status. MiR-145 might be one of the candidates for anti-inflammatory treatment for metabolic diseases.
    [Abstract] [Full Text] [Related] [New Search]