These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.
    Author: Jiao X, Hao Q, Xia X, Lei W, Ouyang Y, Ye H, Mandler D.
    Journal: ChemSusChem; 2018 Mar 09; 11(5):907-915. PubMed ID: 29388379.
    Abstract:
    The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g-1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g-1 than the GP electrode (185.7 F g-1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors.
    [Abstract] [Full Text] [Related] [New Search]