These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced Hypothalamic NMDA Receptor Activity Contributes to Hyperactivity of HPA Axis in Chronic Stress in Male Rats. Author: Zhou JJ, Gao Y, Zhang X, Kosten TA, Li DP. Journal: Endocrinology; 2018 Mar 01; 159(3):1537-1546. PubMed ID: 29390057. Abstract: Chronic stress stimulates corticotrophin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus (PVN) of the hypothalamus and leads to hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, but the mechanisms underlying this action are unknown. Because chronic stress enhances N-methyl-d-aspartate receptor (NMDAR) activity in various brain regions, we hypothesized that augmented NMDAR activity contributes to the hyperactivity of PVN-CRH neurons and the HPA axis in chronic stress. We performed whole-cell patch-clamp recordings on PVN-CRH neurons expressing CRH promoter-driven enhanced green fluorescent protein in brain slices from rats exposed to chronic unpredictable mild stress (CUMS) and unstressed rats. CUMS rats had significantly higher expression levels of the NMDAR subunits GluN1 in the PVN than unstressed rats. Furthermore, puff NMDA-elicited currents, evoked NMDAR currents, and the baseline frequency of the miniature excitatory postsynaptic currents (mEPSCs) in PVN-CRH neurons were significantly larger in CUMS rats than in unstressed rats. The NMDAR-specific antagonist 2-amino-5-phosphonopentanoic acid (AP5) significantly decreased the frequency of mEPSCs of PVN-CRH neurons in CUMS rats but did not change the frequency or amplitude of mEPSCs in unstressed rats. Bath application of AP5 normalized the elevated firing activity of PVN-CRH neurons in CUMS rats but not in unstressed rats. In addition, microinjection of the NMDAR antagonist memantine into the PVN normalized the elevated corticosterone (CORT) levels in CUMS rats to the levels in unstressed rats, but did not alter CORT levels in unstressed rats. Our findings suggest that synaptic NMDAR activity is enhanced in CUMS rats and contributes to the hyperactivity of PVN-CRN neurons and the HPA axis.[Abstract] [Full Text] [Related] [New Search]