These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genotoxicity study of Ethiopian medicinal plant extracts on HepG2 cells. Author: Kahaliw W, Hellman B, Engidawork E. Journal: BMC Complement Altern Med; 2018 Feb 01; 18(1):45. PubMed ID: 29391002. Abstract: BACKGROUND: Most of herbal medicines are used without any standard safety and toxicological trials although common assumption is that these products are nontoxic. However, this assumption is incorrect and dangerous, so toxicological studies should be done for herbal drugs. Although Pterolobium stellatum, Otostegia integrifolia and Vernonia amygdalina root extracts are frequently used in Ethiopian traditional medicine, there are no evidences of their active toxic compounds. Therefore, we made an effort to assess probable genotoxic effect of these plant extracts on DNA of human hematoma (HepG2) cells using alkaline comet assay. METHODS: Genotoxic effects of extracts were evaluated using single cell gel electrophoresis (SCGE) method on HepG2 cell. Regarding comet data, the average mean tail intensities (TI) from each individual experiment and treatment (usually at least 3 cultures/treatment) were pooled and the average mean TI was used as an indicator of DNA damage and the standard error of mean (SEM) as the measure of variance. RESULTS: DNA damage in the form of comet tail has been observed for 1 and 0.5 mg/ml P. stellatum chloroform and 80% methanol extracts on HepG2 cells, respectively. The chloroform extract of P. stellatum showed increased tail DNA percentage in a concentration dependent manner. Comet tail length in the chloroform P. stellatum extract treated cells (1 mg/ml) was significantly higher by 89% (p < 0.05) compared to vehicle treated controls. The rest of test extracts seemed to be without genotoxic effect up to a concentration of 0.5 mg/ml. CONCLUSIONS: Our findings show that two extracts from one plant evaluated have a genotoxic potential in vitro which calls for a more thorough safety evaluation. Such evaluation should include other end-points of genotoxicity apart from DNA damage, and possibly also pure compounds.[Abstract] [Full Text] [Related] [New Search]