These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Construction of Effective Minimal Active Microbial Consortia for Lignocellulose Degradation. Author: Puentes-Téllez PE, Falcao Salles J. Journal: Microb Ecol; 2018 Aug; 76(2):419-429. PubMed ID: 29392382. Abstract: Enriched microbial communities, obtained from environmental samples through selective processes, can effectively contribute to lignocellulose degradation. Unfortunately, fully controlled industrial degradation processes are difficult to reach given the intrinsically dynamic nature and complexity of the microbial communities, composed of a large number of culturable and unculturable species. The use of less complex but equally effective microbial consortia could improve their applications by allowing for more controlled industrial processes. Here, we combined ecological theory and enrichment principles to develop an effective lignocellulose-degrading minimal active microbial Consortia (MAMC). Following an enrichment of soil bacteria capable of degrading lignocellulose material from sugarcane origin, we applied a reductive-screening approach based on molecular phenotyping, identification, and metabolic characterization to obtain a selection of 18 lignocellulose-degrading strains representing four metabolic functional groups. We then generated 65 compositional replicates of MAMC containing five species each, which vary in the number of functional groups, metabolic potential, and degradation capacity. The characterization of the MAMC according to their degradation capacities and functional diversity measurements revealed that functional diversity positively correlated with the degradation of the most complex lignocellulosic fraction (lignin), indicating the importance of metabolic complementarity, whereas cellulose and hemicellulose degradation were either negatively or not affected by functional diversity. The screening method described here successfully led to the selection of effective MAMC, whose degradation potential reached up 96.5% of the degradation rates when all 18 species were present. A total of seven assembled synthetic communities were identified as the most effective MAMC. A consortium containing Stenotrophomonas maltophilia, Paenibacillus sp., Microbacterium sp., Chryseobacterium taiwanense, and Brevundimonas sp. was found to be the most effective degrading synthetic community.[Abstract] [Full Text] [Related] [New Search]