These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Apoptosis of posterior silk gland of Bombyx mori during spinning period and the role of PI3K/Akt pathway.
    Author: Hu JH, Cheng XY, Li JX, Xue B, Tian JH, Hu JS, Li B.
    Journal: Arch Insect Biochem Physiol; 2018 May; 98(1):e21450. PubMed ID: 29400415.
    Abstract:
    Bombyx mori is an economic insect of the Lepidoptera. Its posterior silk gland (PSG) is an important organ for fibroin synthesis. In order to study the occurrence of apoptosis in PSG and the role of PI3K/Akt signaling pathway during spinning period, changes in morphology of silk gland, expressions of fibroin components Fib-H, Fib-L and P25 and Akt, TOR2, P70S6K and S6 in PI3K/Akt pathway, expressions of apoptosis related genes caspase-3, caspase-9 and activity of caspase-3 were explored. The results showed that the morphology of silk gland dramatically degenerated; transcription of Fib-H, Fib-L, and P25 gradually declined with time; and Fib-L protein level reduced by 0.6-fold at 72 h. Moreover, the transcription levels of Akt, TOR2, P70S6K, and S6 also decreased by 0.3-, 0.8-, 0.7-, and 0.1-fold, respectively, indicating that the downregulation of PI3K/Akt signaling pathway could lead to reduction in fibroin synthesis. In addition, the transcription levels of caspase-3 and caspase-9 increased by 1.3- and 3.6-fold, respectively, and the enzyme activity of caspase-3 grew at a maximum of 1.6-fold. The results showed the occurrence of apoptosis in PSG during spinning period. In conclusion, the present study indicated that both the decline in fibroin components and the increase in apoptosis-related genes were regulated by PI3K/Akt signaling pathway during spinning period, which shed new light on the functions of PI3K/Akt signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]