These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus. Author: Neves RAF, Contins M, Nascimento SM. Journal: Mar Environ Res; 2018 Apr; 135():11-17. PubMed ID: 29402518. Abstract: Blooms of the benthic dinoflagellate Ostreopsis cf. ovata have been recorded with increasing frequency, intensity and geographic distribution. This dinoflagellate produces potent toxins that may cause mortality of marine invertebrates. Adults of sea urchins are commonly affected by O. cf. ovata exposure with evidence of spines loss and high mortality during periods of high dinoflagellate abundances. Here, we report on the effects of the toxic dinoflagellate O. cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus, a key ecological herbivore. Lytechinus variegatus eggs and sperm were experimentally exposed to different concentrations of Ostreopsis cf. ovata (4, 40, 400, and 4000 cells ml-1) to test the hypothesis that fertilization success, embryonic and larval development of the sea urchin are negatively affected by the toxic dinoflagellate even at low abundances. Reduced fertilization, developmental failures, embryo and larval mortality, and occurrence of abnormal offspring were evident after exposure to O. cf. ovata. Fertilization decreased when gametes were exposed to high O. cf. ovata abundances (400 and 4000 cells ml-1), but just the exposure to the highest abundance significantly reduced fertilization success. Sea urchin early development was affected by O. cf. ovata in a dose-dependent way, high dinoflagellate abundances fully inhibited the early development of L. variegatus. Ostreopsis cf. ovata significantly increased the mortality of sea urchin eggs and embryos in the first hours of exposure (∼1-3 h), regardless of dinoflagellate abundance. Abundances of 400 and 4000 O. cf. ovata cells ml-1 induced significantly higher mortality on sea urchin initial stages in the first hours, and no egg or embryo was found in these treatments after 18 h of incubation. The early echinopluteus larva was only reached in the control and in treatments with low Ostreopsis cf. ovata abundances (4 and 40 cells ml-1). The exposure to O. cf. ovata led to significantly higher occurrence of skeletal anomalies in the early larva of L. variegatus. Interactions of sea urchin gametes and Ostreopsis cells may naturally occur in coastal areas due to the match between O. cf. ovata blooms and L. variegatus reproductive period. Reduced larval density and increased larval abnormalities were observed even at low abundances (4 and 40 cells ml-1) frequently found in tropical environments all year round. The chronic exposure to O. cf. ovata could significantly impact larval fitness, thus compromising recruitment success, and highlight the negative effects of benthic HABs on sea urchin populations and its possible broader ecological implications.[Abstract] [Full Text] [Related] [New Search]