These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An ionic liquid supported CeO2 nanoparticles-carbon nanotubes composite-enhanced electrochemical DNA-based sensor for the detection of Pb2.
    Author: Li Y, Liu XR, Ning XH, Huang CC, Zheng JB, Zhang JC.
    Journal: J Pharm Anal; 2011 Nov; 1(4):258-263. PubMed ID: 29403707.
    Abstract:
    An electrochemical sensor incorporating a signal enhancement for the determination of lead (II) ions (Pb2+) was designed on the basis of the thrombin-binding aptamer (TBA) as a molecular recognition element and ionic liquid supported cerium oxide (CeO2) nanoparticles-carbon nanotubes composite modification. The composite comprises nanoparticles CeO2, multi-wall carbon nanotubes (MWNTs) and hydrophobic room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4). The electrochemical sensors were fabricated by immersing the CeO2-MWNTs-EMIMBF4 modified glassy carbon electrode (GCE) into the solution of TBA probe. In the presence of Pb2+, the TBA probe could form stable G-quartet structure by the specific binding interactions between Pb2+ and TBA. The TBA-bound Pb2+ can be electrochemically reduced, which provides a readout signal for quantitative detection of Pb2+. The reduction peak current is linearly related to the concentration of Pb2+ from 1.0×10-8 M to 1.0×10-5 M with a detection limit of 5×10-9 M. This work demonstrates that the CeO2-MWNTs-EMIMBF4 nanocomposite modified GCE provides a promising platform for immobilizing the TBA probe and enhancing the sensitivity of the DNA-based sensors.
    [Abstract] [Full Text] [Related] [New Search]