These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex. Author: Zhao F, Wang W, Lu W, Xu L, Yang S, Cai XM, Zhou M, Lei M, Ma M, Xu HJ, Cao F. Journal: Eur J Med Chem; 2018 Feb 25; 146():451-459. PubMed ID: 29407970. Abstract: Five bioactive dehydroabietylamine Schiff-base derivatives (L1-L5) had been synthesized from Dehydroabietylamine (L0), and the complex Cu(L1)2 had been obtained from the compound L1 and copper(II) acetate. Their activities against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver) and HUVEC (umbilical vein, normal cell) in vitro were investigated. The toxicity of L1-L5 and Cu(L1)2 was all lower than L0. For MCF-7 cell, L1, L3, L4, L5 and Cu(L1)2 had higher antitumor activity than L0. The smallest IC50 value was 2.58 μM of L5. For A549 cell, the IC50 value of the compound L4 was smaller than L0, which indicated that the compound L4 had higher anti-A549 activity than L0. For HepG2 cell, the IC50 value of L4(0.24 μM) and L5 (0.14 μM) were much smaller than L0, which suggested L4 and L5 had higher anti-HepG2 activity. L5 was 180 times more effective at inhibiting cultured HepG2 cells survival than normal cells, with average IC50 values of 0.14 and 25.56 μM. Furthermore, L0, L4 and L5 contrasting with Doxorubicin had been measured with the ability to induce apoptosis. It turned out that L4 and L5 could induce more HepG2 cells apoptosis, which suggested they may be potential antitumor drugs.[Abstract] [Full Text] [Related] [New Search]