These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence.
    Author: Blankenstein NE, Schreuders E, Peper JS, Crone EA, van Duijvenvoorde ACK.
    Journal: Neuroimage; 2018 May 15; 172():663-673. PubMed ID: 29408323.
    Abstract:
    Although many neuroimaging studies have investigated adolescent risk taking, few studies have dissociated between decision-making under risk (known probabilities) and ambiguity (unknown probabilities). Furthermore, which brain regions are sensitive to individual differences in task-related and self-reported risk taking remains elusive. We presented 198 adolescents (11-24 years, an age-range in which individual differences in risk taking are prominent) with an fMRI paradigm that separated decision-making (choosing to gamble or not) and reward outcome processing (gains, no gains) under risky and ambiguous conditions, and related this to task-related and self-reported risk taking. We observed distinct neural mechanisms underlying risky and ambiguous gambling, with risk more prominently associated with activation in parietal cortex, and ambiguity more prominently with dorsolateral prefrontal cortex (PFC), as well as medial PFC during outcome processing. Individual differences in task-related risk taking were positively associated with ventral striatum activation in the decision phase, specifically for risk, and negatively associated with insula and dorsomedial PFC activation, specifically for ambiguity. Moreover, dorsolateral PFC activation in the outcome phase seemed a prominent marker for individual differences in task-related risk taking under ambiguity as well as self-reported daily-life risk taking, in which greater risk taking was associated with reduced activation in dorsolateral PFC. Together, this study demonstrates the importance of considering multiple risk-taking measures, and contextual moderators, in understanding the neural mechanisms underlying adolescent risk taking.
    [Abstract] [Full Text] [Related] [New Search]