These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A comparative study of muscle spindles in slow and fast neonatal muscles of normal and dystrophic mice.
    Author: Johnson MI, Ovalle WK.
    Journal: Am J Anat; 1986 Apr; 175(4):413-27. PubMed ID: 2940857.
    Abstract:
    Muscle spindles from the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of genetically dystrophic mice of the dy2J/dy2J strain were compared with age-matched normal animals at neonatal ages of 1-3 weeks according to histochemical, quantitative, and ultrastructural parameters. Intrafusal fibers in both the soleus and EDL exhibited similar regional differences in myosin ATPase activity, and conformed to those noted previously in various adult species. In distal polar regions, all nuclear bag fibers resembled extrafusal fibers of the type 1 variety, whereas in capsular zones they could be divided into two subtypes. Nuclear chain fibers possessed a staining pattern similar to type 2 extrafusal fibers, and in contrast to the bag fibers they exhibited no regional variations. These features were consistently observed in both the normal and dystrophic muscles at all ages. Spindles varied only slightly in their number and distribution in the two types of muscle, and their location followed the neurovascular branching pattern in each. Irrespective of age or genotype, spindles in the soleus were more homogeneously dispersed, but those in the EDL were concentrated along the dorsal aspect of the muscle. No significant differences were noted in the total number of spindles between normal and dystrophic muscles. In addition, no dramatic differences were observed in the muscle spindle index for soleus and EDL. The first obvious disease-related changes were noted in extrafusal fibers of the soleus of 3-week-old mice, and spindles were often located close to these areas of fiber degeneration. Despite alterations in the surrounding tissue, however, spindles appeared morphologically unaltered in dystrophy. These observations indicate that intrafusal fibers of spindles in neonatal mice appear enzymatically and histologically unaffected in incipient stages of progressive muscular dystrophy.
    [Abstract] [Full Text] [Related] [New Search]