These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation and purification of glycosylphosphatidylinositols (GPIs) in the schizont stage of Theileria annulata and determination of antibody response to GPI anchors in vaccinated and infected animals.
    Author: Abbasnia T, Asoodeh A, Habibi G, Haghparast A.
    Journal: Parasit Vectors; 2018 Feb 06; 11(1):82. PubMed ID: 29409517.
    Abstract:
    BACKGROUND: Tropical theileriosis is widely distributed from North Africa to East Asia. It is a tick-borne disease caused by Theileria annulata, an obligate two-host intracellular protozoan parasite of cattle. Theileria annulata use leukocytes and red blood cells for completion of the life-cycle in mammalian hosts. The stage of Theileria annulata in monocytes and B lymphocytes of cattle is an important step in pathogenicity and diagnosis of the disease. Glycosylphosphatidylinositols (GPIs) are a distinct class of glycolipid structures found in eukaryotic cells and are implicated in several biological functions. GPIs are particularly abundant in protozoan parasites, where they are found as free glycolipids or attached to proteins in the plasma membrane. RESULTS: In this study we first isolated and purified schizonts of Theileria annulata from infected leukocytes in Theileria annulata vaccine cell line (S15) by aerolysin-percoll technique. Then, the free GPIs of schizont stage and isolated GPI from cell membrane glycoproteins were purified by high performance liquid chromatography (HPLC) and confirmed by gas chromatography-mass spectrometry (GC-MS). Furthermore, enzyme linked immunosorbent assay (ELISA) on the serum samples obtained from naturally infected, as well as Theileria annulata-vaccinated animals, confirmed a significant (P < 0.01) high level of anti-GPI antibody in their serum. CONCLUSIONS: The results presented in this study show, to our knowledge for the first time, the isolation of GPI from the schizont stage of Theileria annulata and demonstrate the presence of anti-GPI antibody in the serum of naturally infected as well as vaccinated animals. This finding is likely to be valuable in studies aimed at the evaluation of chemically structures of GPIs in the schizont stage of Theileria annulata and also for pathogenicity and immunogenicity studies with the aim to develop GPI-based therapies or vaccines.
    [Abstract] [Full Text] [Related] [New Search]