These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The synthesis of a smart streptavidin-functionalized poly(N-isopropylacrylamide) composite and its application in the separation and detection of virus nucleic acid.
    Author: Wang X, Du M, Mao G, Zheng J, Chen J, Ji X, He Z.
    Journal: Talanta; 2018 May 01; 181():73-79. PubMed ID: 29426544.
    Abstract:
    A new kind of polymeric material (PNIPAAm-co-SA) was prepared by conjugating a thermosensitive polymer, Poly (N-isopropylacrylamide) (PNIPAAm) with streptavidin (SA). This smart prepared composite displayed a controllable conformation change between an expanded and a collapsed form, below or above its lower critical solution temperature (LCST). Differential scanning calorimetry (DSC) analysis demonstrated that the PNIPAAm-co-SA bioconjugate showed the same LCST as the original synthetic polymer, PNIPAAm, which was also 32°C. Based on the specific interaction between SA and biotin, a higher capture efficiency of PNIPAAm-co-SA, which was almost 100% in PBS buffer solution and above 70% in serum was obtained, respectively. And the high affinity between PNIPAAm-co-SA and biotin was still maintained after three heating cycles. Subsequently, the variola virus (small pox, VV) oligonucleotide sequence was chosen as a model to demonstrate the sensitivity of the biosensor which was fabricated based on PNIPAAm-co-SA. The biosensor exhibited the ability to separate and enrich targets from complicated system with its phase transition ability, and high sensitivity toward VV-targets were achieved. Moreover, other types of targets such as proteins and cells, could be detected by changing the biotin-captures, which indicated the broad applicability of biosensors based on this smart polymer material.
    [Abstract] [Full Text] [Related] [New Search]