These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: γ-Glutamyl cyclotransferase contributes to tumor progression in high grade serous ovarian cancer by regulating epithelial-mesenchymal transition via activating PI3K/AKT/mTOR pathway.
    Author: Li Y, Wu T, Wang Y, Yang L, Hu C, Chen L, Wu S.
    Journal: Gynecol Oncol; 2018 Apr; 149(1):163-172. PubMed ID: 29429592.
    Abstract:
    OBJECTIVE: High grade serous ovarian cancer (HGSC) remains one of the most lethal malignancies in females. We previously reported that γ-glutamyl cyclotransferase (GGCT) was significantly upregulated in serous ovarian cancer. The current study was aimed to explore the function and underlying mechanism of GGCT in HGSC. METHODS: GGCT expression was assessed by immunohistochemistry in 128 HGSC patients. Stable cell lines with GGCT gene overexpression or knockdown were established to investigate the function of GGCT in HGSC in vitro and in vivo. RESULTS: GGCT is highly upregulated in HGSC tissues and associated with FIGO stage, lymph node metastasis and ascitic fluid volume. High expression of GGCT is associated with poor survival in HGSC patients. The Harrell's c-indexes of the prognostic models for overall survival and progression-free survival prediction were 0.758 and 0.726, respectively. GGCT knockdown suppresses proliferation, clone formation, migration, and invasion of tumor cells in vitro while forced GGCT overexpression presents opposite results. Furthermore, GGCT silencing inhibits tumor growth and spread in vivo. Epithelial-mesenchymal transition (EMT) and PI3K/AKT/mTOR signaling pathway are suppressed in GGCT silenced cells and enhanced in GGCT overexpressed cells. Inactivation of PI3K/AKT/mTOR signaling pathway in GGCT overexpressed cells induces EMT inhibition. CONCLUSIONS: Our data reveals an important role of GGCT in regulating EMT and progression of HGSC, providing a valuable prognostic marker and potential target for treatment of HGSC patients.
    [Abstract] [Full Text] [Related] [New Search]