These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional characterization of purinergic P2Y2 and P2Y12 receptors involved in Japanese flounder (Paralichthys olivaceus) innate immune responses.
    Author: Li S, Hao G, Xu Y, Wang N, Li J, Geng X, Sun J.
    Journal: Fish Shellfish Immunol; 2018 Apr; 75():208-215. PubMed ID: 29432865.
    Abstract:
    G-protein-coupled P2Y receptors activated by extracellular nucleotides play important roles under different physiological and pathophysiological conditions in mammals. To investigate the immunological relevance of P2Y receptors in fish, we identified and characterized the P2Y2 and P2Y12 receptors in Japanese flounder Paralichthys olivaceus. The P. olivaceus P2Y2 and P2Y12 receptors harbor seven transmembrane domains but share only 24% sequence identity. Real-time PCR analysis revealed the constitutive but unequal mRNA expression pattern of P2Y2R and P2Y12R in normal Japanese flounder tissues with the dominant expression of P2Y2R in head kidney and blood and P2Y12R in hepatopancreas. In addition, the expression of P2Y2 and P2Y12 receptors was markedly modulated by PAMPs stimulation and Edwardsiella tarda infection. Furthermore, blockage of P2Y12R potently increased ADP-activated pro-inflammatory cytokine IL-1beta gene expression in the head kidney macrophages (HKMs). Moreover, inhibition of P2Y2 and P2Y12 receptor activity with their respective potent antagonists significantly altered some of the LPS-induced pro-inflammatory cytokine gene expression in the HKMs. However, blockade of P2Y12R did not affect the poly(I:C)-induced pro-inflammatory cytokine gene expression examined in the HKMs. Collectively, we have for the first time reported the role of purinergic P2Y2 and P2Y12 receptors in fish innate immunity. Our findings have also addressed the importance of extracellular ATP and its metabolites in fish innate immune responses.
    [Abstract] [Full Text] [Related] [New Search]