These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel approach to study gastropod-mediated innate immune reactions against metastrongyloid parasites.
    Author: Penagos-Tabares F, Lange MK, Seipp A, Gärtner U, Mejer H, Taubert A, Hermosilla C.
    Journal: Parasitol Res; 2018 Apr; 117(4):1211-1224. PubMed ID: 29441415.
    Abstract:
    The anthropozoonotic metastrongyloid nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis, as well as Angiostrongylus vasorum, Crenosoma vulpis, Aelurostrongylus abstrusus and Troglostrongylus brevior are currently considered as emerging gastropod-borne parasites and have gained growing scientific attention in the last years. However, the knowledge on invertebrate immune responses and on how metastrongyloid larvae are attacked by gastropod immune cells is still limited. This work aims to describe an in vitro system to investigate haemocyte-derived innate immune responses of terrestrial gastropods induced by vital axenic metastrongyloid larvae. We also provide protocols on slug/snail management and breeding under standardized climate conditions (circadian cycle, temperature and humidity) for the generation of parasite-free F0 stages which are essential for immune-related investigations. Adult slug species (Arion lusitanicus, Limax maximus) and giant snails (Achatina fulica) were maintained in fully automated climate chambers until mating and production of fertilized eggs. Newly hatched F0 juvenile specimens were kept under parasite-free conditions before experimental use. An improved protocol for gastropod haemolymph collection and haemocyte isolation was established. Giemsa-stained haemolymph preparations showed adequate haemocyte isolation in all three gastropod species. Additionally, a protocol for the production of axenic first and third stage larvae (L1, L3) was established. Haemocyte functionality was tested in haemocyte-nematode-co-cultures. Scanning electron microscopy (SEM) and light microscopy analyses revealed that gastropod-derived haemocytes formed clusters as well as DNA-rich extracellular aggregates catching larvae and decreasing their motility. These data confirm the usefulness of the presented methods to study haemocyte-mediated gastropod immune responses to better understand the complex biology of gastropod-borne diseases.
    [Abstract] [Full Text] [Related] [New Search]