These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of Selenization Processes on CIGS Solar Cell Performance. Author: Wu CH, Wu PW, Chen JH, Kao JY, Hsu CY. Journal: J Nanosci Nanotechnol; 2018 Jul 01; 18(7):5074-5081. PubMed ID: 29442696. Abstract: Cu(In, Ga)Se2 (CIGS) films were fabricated by a two-step process method using sputtering from Cu0.7Ga0.3 and In targets. The metallic precursor structures of In/CuGa/In were prepared, and CuGa film was adjusted to the thicknesses of 150, 200, 250 and 300 nm, in order to optimize the CIGS film. After selenization, three independent CIGS (112), CIGS (220/204) and CIGS (312/116) began to crystallize at ~280 °C and phase peaks continued growing until 560 °C. Experimental results showed that with a single stage selenization method, the excessive stoichiometry of the CIGS films was obtained. Using three sequential stages for the selenization process, with a annealing time of 20 min, the stoichiometry of the CIGS absorbers with the Cu/(In + Ga) and Ga/(In + Ga) showed atomic ratios of 0.94 and 0.34, respectively. The intensity of the (112) XRD diffraction peak became stronger, indicating an improvement in the crystallinity. Raman spectra of CIGS absorbers showed a main peak (174 cm-1) and two weak signals (212 and 231 cm-1). TEM image for electron diffraction pattern showed that the grains were randomly oriented. CIGS solar cell device prepared with a proper selenization, a maximum efficiency of 12.45% was obtained.[Abstract] [Full Text] [Related] [New Search]