These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microscope-Integrated Intraoperative Ultrahigh-Speed Swept-Source Optical Coherence Tomography for Widefield Retinal and Anterior Segment Imaging. Author: Lu CD, Waheed NK, Witkin A, Baumal CR, Liu JJ, Potsaid B, Joseph A, Jayaraman V, Cable A, Chan K, Duker JS, Fujimoto JG. Journal: Ophthalmic Surg Lasers Imaging Retina; 2018 Feb 01; 49(2):94-102. PubMed ID: 29443358. Abstract: BACKGROUND AND OBJECTIVE: To demonstrate the feasibility of retinal and anterior segment intraoperative widefield imaging using an ultrahigh-speed, swept-source optical coherence tomography (SS-OCT) surgical microscope attachment. PATIENTS AND METHODS: A prototype post-objective SS-OCT using a 1,050-nm wavelength, 400 kHz A-scan rate, vertical cavity surface-emitting laser (VCSEL) light source was integrated to a commercial ophthalmic surgical microscope after the objective. Each widefield OCT data set was acquired in 3 seconds (1,000 × 1,000 A-scans, 12 × 12 mm2 for retina and 10 × 10 mm2 for anterior segment). RESULTS: Intraoperative SS-OCT was performed in 20 eyes of 20 patients. In six of seven membrane peels and five of seven rhegmatogenous retinal detachment repair surgeries, widefield retinal imaging enabled evaluation pre- and postoperatively. In all seven cataract cases, anterior imaging evaluated the integrity of the posterior lens capsule. CONCLUSIONS: Ultrahigh-speed SS-OCT enables widefield intraoperative viewing in the posterior and anterior eye. Widefield imaging visualizes ocular structures and pathology without requiring OCT realignment. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:94-102.].[Abstract] [Full Text] [Related] [New Search]