These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking.
    Author: Skornitzke S, Fritz F, Mayer P, Koell M, Hansen J, Pahn G, Hackert T, Kauczor HU, Stiller W.
    Journal: Br J Radiol; 2018 May; 91(1085):20170351. PubMed ID: 29446319.
    Abstract:
    OBJECTIVE: Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. METHODS: Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kVp with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kVp image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. RESULTS: Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min-1, respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (rmax = 0.89; p < 0.05). Differences in iodine concentrations between healthy pancreatic tissue and carcinoma were statistically significant for DECT acquisitions corresponding to trigger delays of 15-21 s (p < 0.05). CONCLUSION: An acquisition window between 15 and 21 s after exceeding bolus tracking threshold shows promising results for acquisition of DECT iodine maps as an alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.
    [Abstract] [Full Text] [Related] [New Search]