These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CaMKII inhibition ameliorated levodopa-induced dyskinesia by downregulating tyrosine hydroxylase activity in an experimental model of Parkinson's disease.
    Author: Yang X, Zhu Z, Ding X, Wang X, Cui G, Hua F, Xiang J.
    Journal: Brain Res; 2018 May 15; 1687():66-73. PubMed ID: 29452071.
    Abstract:
    Levodopa (L-dopa) remains the best treatment for Parkinson's disease (PD). However, long-term L-dopa treatment induces dyskinesia. The mechanism of L-dopa-induced dyskinesia (LID) is not fully understood. Enhanced activity of protein kinase A (PKA) and pulsatile dopamine (DA) stimulation plays an important role in LID. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for DA synthesis. Decreased TH activity causes reduced pulsatile DA stimulation, which in turn reduces LID. Moreover, TH is a substrate of CaMKII. However, it is unknown whether inhibition of CaMKII reduces LID by downregulating the activity of TH. In this study, we found that CaMKII antagonist KN-93 reduced DA released in PC12 cells; in the meantime, KN-93 reduced phosphorylated levels of CaMKIIα and TH at Ser 40. Intrastriatal administration of KN-93 reduced LID without affecting the antiparkinsonian effect of L-dopa in PD mice. Mechanistically, KN-93 treatmentreduced phosphorylated CaMKIIα levels and subsequently downregulated phosphorylated TH at Ser 40 expression. Consequently, extracellular DA efflux was reduced andthe activation threshold of the PKA pathway was lowered. Moreover, KN-93 treatment reduced the expression of Arc and Penk, two immediate early genes, induced by chronic L-dopa. These data indicate that inhibition of CaMKIIα decreases LID at least partially by suppressing TH activity and subsequently reducing extracellular DA efflux and the activity of the PKA pathway, suggesting that CaMKIIα may be an alternative target for the treatment of LID.
    [Abstract] [Full Text] [Related] [New Search]