These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impairment of mitochondrial and sarcoplasmic reticular functions during the development of heart failure in cardiomyopathic (UM-X7.1) hamsters.
    Author: Panagia V, Lee SL, Singh A, Pierce GN, Jasmin G, Dhalla NS.
    Journal: Can J Cardiol; 1986; 2(4):236-47. PubMed ID: 2945628.
    Abstract:
    The oxidative phosphorylation as well as calcium transporting properties of heart mitochondria and calcium transport activities of the fragments of the sarcoplasmic reticulum (microsomes) were studied during the life span of cardiomyopathic hamsters (UM-X7.1). Control healthy hamsters of the same age group were used for comparison. No changes in the oxidative phosphorylation ability of cardiomyopathic mitochondria were seen at early and moderate stages of heart failure; however, at severe stages, mitochondrial respiratory functions, but not the ADP:0 ratio, were impaired. Both creatine phosphate and ATP contents were decreased without any significant changes in the ATPase activities of myofibrils from the failing hearts. Heart mitochondria from cardiomyopathic animals at severe stages of failure exhibited less calcium binding and uptake activities in comparison with the control values whereas no changes in the mitochondrial calcium binding and uptake were seen in cardiomyopathic hamsters which showed no clinical signs of heart failure. Although mitochondrial calcium binding in cardiomyopathic hearts at early and moderate stages of failure was decreased, mitochondrial calcium uptake was not significantly different from the control. Microsomal calcium binding activity, unlike calcium uptake activity, was decreased in the hearts of cardiomyopathic hamsters without any signs of heart failure. Both calcium binding and calcium uptake activities of microsomes from animals with early, moderate and severe heart failure were less in comparison with the control values but were not associated with any changes in the Ca2+-stimulated ATPase activity. These results suggest that changes in the process of mitochondrial energy production and mitochondrial Ca2+-transport may be secondary to other factors whereas alterations in the sarcoplasmic reticular Ca2+-transport may lead to the development of heart failure in the cardiomyopathic hamsters.
    [Abstract] [Full Text] [Related] [New Search]