These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin.
    Author: Lash JA, Sellers JR, Hathaway DR.
    Journal: J Biol Chem; 1986 Dec 05; 261(34):16155-60. PubMed ID: 2946681.
    Abstract:
    Caldesmon was purified to homogeneity from both chicken gizzard and bovine aortic smooth muscles. Caldesmon purified from bovine aorta was slightly larger than caldesmon purified from chicken gizzards (Mr = 140,000) when the two were compared electrophoretically. Caldesmon bound tightly to actin saturating at a molar ratio of 1 caldesmon monomer per 6.6 actin monomers. Ca2+-calmodulin appeared to reduce the affinity of caldesmon for actin. Caldesmon was also a potent inhibitor of heavy actomeromyosin ATPase activity producing a maximal effect at a ratio of 1 caldesmon monomer per 7-10 actin monomers. This effect was also antagonized by Ca2+-calmodulin. While caldesmon inhibited heavy actomeromyosin ATPase activity, it greatly enhanced binding of both unphosphorylated and phosphorylated heavy meromyosin to actin in the presence of MgATP, reducing the Kd for binding by a factor of 40 for each form of heavy meromyosin. Although we did identify a Ca2+-calmodulin-stimulated "caldesmon kinase" activity in caldesmon preparations purified under nondenaturing conditions, we observed no effect of phosphorylation (2 mol of PO4/mol of caldesmon) on the capacity to inhibit heavy actomeromyosin ATPase activity. Our results suggest that caldesmon could serve some role in smooth muscle function by enhancing cross-bridge affinity while inhibiting actomyosin ATPase activity.
    [Abstract] [Full Text] [Related] [New Search]