These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phospholipid requirement of Ca2+-stimulated, Mg2+-dependent ATP hydrolysis in rat brain synaptic membranes. Author: Gandhi CR, Ross DH. Journal: Neurochem Res; 1986 Oct; 11(10):1447-62. PubMed ID: 2946970. Abstract: The phospholipid requirement for Ca2+-stimulated, Mg2+-dependent ATP hydrolysis (Ca2+/Mg2+-ATPase) and Mg2+-stimulated ATP hydrolysis (Mg2+-ATPase) in rat brain synaptosomal membranes was studied employing partial delipidation of the membranes with phospholipase A2 (Hog pancreas), phospholipase C (Bacillus cereus) and phospholipase D (cabbage). Treatment with phospholipase A2 caused an increase in the activities of both Ca2+/Mg2+-ATPase and Mg2+-ATPase whereas with phospholipase C treatment both the enzyme activities were inhibited. Phospholipase D treatment had no effect on Ca2+/Mg2+-ATPase but Mg2+-ATPase activity was inhibited. Inhibition of Mg2+-ATPase activity after phospholipase C treatment was relieved with the addition of phosphatidylinositol-4,5-bisphosphate (PIP2) and to a lesser extent with phosphatidylinositol-4-phosphate (PIP) and phosphatidylcholine (PC). Phosphatidylserine (PS), phosphatidic acid (PA), PIP and PIP2 brought about the reactivation of Ca2+/Mg2+-ATPase. Phosphatidylinositol (PI) and PA inhibited Mg2+-ATPase activity. Kms for Ca2+ (0.47 microM) and Mg2+ (60 microM) of the enzyme were found to be unaffected after treatment with the phospholipases.[Abstract] [Full Text] [Related] [New Search]