These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of magnolol on Ca2+ homeostasis and its related physiology in human oral cancer cells. Author: Hsieh SF, Chou CT, Liang WZ, Kuo CC, Wang JL, Hao LJ, Jan CR. Journal: Arch Oral Biol; 2018 May; 89():49-54. PubMed ID: 29471192. Abstract: OBJECTIVE: Magnolol, a polyphenol compound from herbal medicines, was shown to alter physiology in various cell models. However, the effect of magnolol on Ca2+ homeostasis and its related physiology in oral cancer cells is unclear. This study examined whether magnolol altered Ca2+ signaling and cell viability in OC2 human oral cancer cells. METHODS: Cytosolic Ca2+ concentrations ([Ca2+]i) in suspended cells were measured by using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. RESULTS: Magnolol at concentrations of 20-100 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 50%. Magnolol (100 μM) induced Mn2+ influx suggesting of Ca2+ entry. Magnolol-induced Ca2+ entry was partially suppressed by protein kinase C (PKC) regulators, and inhibitors of store-operated Ca2+ channels. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished magnolol-evoked [Ca2+]i rises. Conversely, treatment with magnolol abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 partially inhibited magnolol-induced [Ca2+]i rises. Magnolol at 20-100 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). CONCLUSIONS: Together, in OC2 cells, magnolol induced [Ca2+]i rises by evoking partially PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Magnolol also caused Ca2+-independent cell death. Therefore, magnolol-induced cytotoxicity may not be involved in activation mechanisms associated with intracellular Ca2+ mobilization in oral cancer cells.[Abstract] [Full Text] [Related] [New Search]