These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Author: Ching CB, Gupta S, Li B, Cortado H, Mayne N, Jackson AR, McHugh KM, Becknell B. Journal: Kidney Int; 2018 Jun; 93(6):1320-1329. PubMed ID: 29475562. Abstract: The signaling networks regulating antimicrobial activity during urinary tract infection (UTI) are incompletely understood. Interleukin-6 (IL-6) levels increase with UTI severity, but the specific contributions of IL-6 to host immunity against bacterial uropathogens are unknown. To clarify this we tested whether IL-6 activates the Stat3 transcription factor, to drive a program of antimicrobial peptide gene expression in infected urothelium during UTI. Transurethral inoculation of uropathogenic Escherichia coli led to IL-6 secretion, urothelial Stat3 phosphorylation, and activation of antimicrobial peptide transcription, in a Toll-like receptor 4-dependent manner in a murine model of cystitis. Recombinant IL-6 elicited Stat3 phosphorylation in primary urothelial cells in vitro, and systemic IL-6 administration promoted urothelial Stat3 phosphorylation and antimicrobial peptide expression in vivo. IL-6 deficiency led to decreased urothelial Stat3 phosphorylation and antimicrobial peptide mRNA expression following UTI, a finding mirrored by conditional Stat3 deletion. Deficiency in IL-6 or Stat3 was associated with increased formation of intracellular bacterial communities, and exogenous IL-6 reversed this phenotype in IL-6 knockout mice. Moreover, chronic IL-6 depletion led to increased renal bacterial burden and severe pyelonephritis in C3H/HeOuJ mice. Thus, IL-6/Stat3 signaling drives a transcriptional program of antimicrobial gene expression in infected urothelium, with key roles in limiting epithelial invasion and ascending infection.[Abstract] [Full Text] [Related] [New Search]