These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aminomethyl Spectinomycins as Therapeutics for Drug-Resistant Gonorrhea and Chlamydia Coinfections. Author: Butler MM, Waidyarachchi SL, Connolly KL, Jerse AE, Chai W, Lee RE, Kohlhoff SA, Shinabarger DL, Bowlin TL. Journal: Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29483122. Abstract: Bacterial sexually transmitted infections are widespread and common, with Neisseria gonorrhoeae (gonorrhea) and Chlamydia trachomatis (chlamydia) being the two most frequent causes. If left untreated, both infections can cause pelvic inflammatory disease, infertility, ectopic pregnancy, and other sequelae. The recommended treatment for gonorrhea is ceftriaxone plus azithromycin (to empirically treat chlamydial coinfections). Antibiotic resistance to all existing therapies has developed in gonorrheal infections. The need for new antibiotics is great, but the pipeline for new drugs is alarmingly small. The aminomethyl spectinomycins, a new class of semisynthetic analogs of the antibiotic spectinomycin, were developed on the basis of a computational analysis of the spectinomycin binding site of the bacterial 30S ribosome and structure-guided synthesis. The compounds display particular potency against common respiratory tract pathogens as well as the sexually transmitted pathogens that cause gonorrhea and chlamydia. Here, we demonstrate the in vitro potencies of several compounds of this class against both bacterial species; the compounds displayed increased potencies against N. gonorrhoeae compared to that of spectinomycin and, significantly, demonstrated activity against C. trachomatis that is not observed with spectinomycin. Efficacies of the compounds were compared to those of spectinomycin and gentamicin in a murine model of infection caused by ceftriaxone/azithromycin-resistant N. gonorrhoeae; the aminomethyl spectinomycins significantly reduced the colonization load and were as potent as the comparator compounds. In summary, data produced by this study support aminomethyl spectinomycins as a promising replacement for spectinomycin and antibiotics such as ceftriaxone for treating drug-resistant gonorrhea, with the added benefit of treating chlamydial coinfections.[Abstract] [Full Text] [Related] [New Search]