These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chromosome Rearrangements Caused by Double Monosomy in Wheat-Barley Group-7 Substitution Lines. Author: Danilova TV, Friebe B, Gill BS, Poland J, Jackson E. Journal: Cytogenet Genome Res; 2018; 154(1):45-55. PubMed ID: 29486464. Abstract: Interspecific or introgressive hybridization is one of the driving forces in plant speciation, producing allopolyploids or diploids with rearranged genomes. The process of karyotype reshaping following homoploid interspecific hybridization has not been studied experimentally. Interspecific hybridization is widely used in plant breeding to increase genetic diversity and introgress new traits. Numerous introgression stocks were developed for hexaploid wheat Triticum aestivum L. (2n = 6x = 42, genome AABBDD). Double monosomic lines, containing one alien chromosome from the tertiary gene pool of wheat and one homoeologous wheat chromosome, represent a simplified model for studying chromosome rearrangements caused by interspecific hybridization. The pairing of a chromosome from the tertiary gene pool with a wheat homoeologue is restricted by the activity of the wheat Ph1 gene, thus, rearrangements caused by chromosome breakage followed by the fusion of the broken arms can be expected. We analyzed chromosome aberrations in 4 sets of lines that originated from double monosomics of barley (Hordeum vulgare L.) chromosome 7H and wheat group-7 chromosomes with dicentric or ring chromosomes. The dynamics of wheat-barley dicentric chromosomes during plant development was followed and an increased diversity of rearrangements was observed. Besides the targeted group-7 chromosomes, other wheat chromosomes were involved in rearrangements, as chromosomes broken in the centromeric region fused with other broken chromosomes. In some cells, multi-centric chromosomes were observed. The structure and dosage of the introgressed barley chromatin was changed. The transmission of the rearrangements to the progenies was analyzed. The observed aberrations emphasize the importance of cytogenetic screening in gene introgression projects.[Abstract] [Full Text] [Related] [New Search]