These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contrast media injection protocol optimization for dual-energy coronary CT angiography: results from a circulation phantom.
    Author: De Santis D, Caruso D, Schoepf UJ, Eid M, Albrecht MH, Duguay TM, Varga-Szemes A, Laghi A, De Cecco CN.
    Journal: Eur Radiol; 2018 Aug; 28(8):3473-3481. PubMed ID: 29488083.
    Abstract:
    OBJECTIVES: To investigate the minimum iodine delivery rate (IDR) required to achieve diagnostic coronary attenuation (300 HU) with dual-energy coronary CTA. METHODS: Acquisitions were performed on a circulation phantom with a third- generation dual-source CT scanner. Contrast media was injected for a fixed time whilst IDRs varied from 1.0 to 0.3 gI/s in 0.1-gI/s intervals. Noise-optimized virtual monoenergetic imaging (VMI+) reconstructions from 40 to 90 keV in 5 keV increments were generated. Contrast-to-noise ratio (CNR) and coronary HU were measured for each injection. RESULTS: VMI+ from 40-70 keV reached diagnostic attenuation with at least one IDR. The minimum IDR achieving a diagnostic attenuation ranged from 0.4 gI/s at 40 keV (312.8 HU) to 1.0 gI/s at 70 keV (334.1 HU). Attenuation values reached with IDR of 1.0 gI/s were significantly higher at each keV level (p<0.001). CNR showed a near perfect correlation with the IDR (ρ≥0.962; p<0.001), the IDR of 1.0 gI/s provided the highest CNR at each keV level, achieving the highest overall value at 40 keV (54.0±3.1). CONCLUSIONS: IDRs from 0.4-1.0 gI/s associated with VMI+ from 40-70 keV provide diagnostic coronary attenuation with dual-energy coronary CTA. KEY POINTS: • Iodine delivery rate (IDR) is a major determinant of contrast enhancement. • Low-keV noise-optimized monoenergetic images (VMI+) maximize iodine attenuation. • Low-keV VMI+ allows for lower IDRs while maintaining adequate coronary attenuation. • Lowest IDR to reach 300 HU was 0.4 gI/s, 40 keV VMI+.
    [Abstract] [Full Text] [Related] [New Search]