These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model. Author: Yoshida K, Iyori M, Blagborough AM, Salman AM, Dulal P, Sala KA, Yamamoto DS, Khan SM, Janse CJ, Biswas S, Yoshii T, Yusuf Y, Tokoro M, Hill AVS, Yoshida S. Journal: Sci Rep; 2018 Mar 01; 8(1):3896. PubMed ID: 29497047. Abstract: With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use.[Abstract] [Full Text] [Related] [New Search]