These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Degradation in vitro of bacteriophage lambda N protein by Lon protease from Escherichia coli. Author: Maurizi MR. Journal: J Biol Chem; 1987 Feb 25; 262(6):2696-703. PubMed ID: 2950089. Abstract: Lon protease from Escherichia coli degraded lambda N protein in a reaction mixture consisting of the two homogeneous proteins, ATP, and MgCl2 in 50 mM Tris, Ph 8.0. Genetic and biochemical data had previously indicated that N protein is a substrate for Lon protease in vivo (Gottesman, S., Gottesman, M., Shaw, J. E., and Pearson, M. L. (1981) Cell 24, 225-233). Under conditions used for N protein degradation, several lambda and E. coli proteins, including native proteins, oxidatively modified proteins, and cloned fragments of native proteins, were not degraded by Lon protease. Degradation of N protein occurred with catalytic amounts of Lon protease and required the presence of ATP or an analog of ATP. This is the first demonstration of the selective degradation of a physiological substrate by Lon protease in vitro. The turnover number for N protein degradation was approximately 60 +/- 10 min-1 at pH 8.0 in 50 mM Tris/HCl, 25 mM MgCl2 and 4 mM ATP. By comparison the turnover number for oxidized insulin B chain was 20 min-1 under these conditions. Kinetic studies suggest that N protein (S0.5 = 13 +/- 5 microM) is intermediate between oxidized insulin B chain (S0.5 = 160 +/- 10 microM) and methylated casein (S0.5 = 2.5 +/- 1 microM) in affinity for Lon protease. N protein was extensively degraded by Lon protease with an average of approximately six bonds cleaved per molecule. In N protein, as well as in oxidized insulin B chain and glucagon, Lon protease preferentially cut at bonds at which the carboxy group was contributed by an amino acid with an aliphatic side chain (leucine or alanine). However, not all such bonds of the substrates were cleaved, indicating that sequence or conformational determinants beyond the cleavage site affect the ability of Lon protease to degrade a protein.[Abstract] [Full Text] [Related] [New Search]