These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella 'Ellipsoides Gerneck, 1907).
    Author: Matouke MM, Elewa DT, Abdullahi K.
    Journal: Aquat Toxicol; 2018 May; 198():40-48. PubMed ID: 29501936.
    Abstract:
    The wide application of titanium dioxide nanoparticles and phosphorus in the manufacturing of many industrial products mainly used in agricultural sector has resulted in the release of considerable amounts of these compounds into freshwater aquatic ecosystem. These compounds may cause some unexpected effects to aquatic organisms. This study assessed the binary effects of Titanium nanoparticles (nTiO2) and Phosphorus on Chlorella ellipsoides. Toxicological assay test of the compounds nTiO2 (1.25 μM) alone and the combination of Titanium dioxide (1.25 μM) and Phosphorus (16, 32, 80, 160, 240 μM) was assessed, after 96 h exposures, for optical density (OD680), specific growth rate, chlorophyll levels and lipid peroxidation via Malondialdehyde (MDA) activity. Superoxide dismutase (SOD), peroxidase (POD) and glutathione-s-transferase (GST) activities were also measured. Two-way ANOVA showed a significant interaction (P < 0.05) between binary mixture. Co-exposure showed a decreased phosphorus bioconcentration in the microalgae with significant increase (P < 0.05) in chlorophyll a/b and total chlorophyll contents. A significant decrease (P < 0.05) in specific growth rate and optical density were recorded whereas, antioxidant enzymes (MDA, SOD, POD, GST) activities were significantly (P < 0.05) increased. These results showed that the addition of nTiO2 to Phosphorus affected the physiology of microalgae and should be of great concern for freshwater biodiversity.
    [Abstract] [Full Text] [Related] [New Search]