These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lack of metabolism in (R)-ketamine's antidepressant actions in a chronic social defeat stress model.
    Author: Zhang K, Fujita Y, Hashimoto K.
    Journal: Sci Rep; 2018 Mar 05; 8(1):4007. PubMed ID: 29507385.
    Abstract:
    Since the metabolism of (R,S)-ketamine to (2R,6R)-hydroxynorketamine (HNK) is reported to be essential for ketamine's antidepressant effects, there is an increasing debate about antidepressant effects of (2R,6R)-HNK. Using pharmacokinetic and behavioral techniques, we investigated whether intracerebroventricular (i.c.v.) infusion of (R)-ketamine or (2R,6R)-HNK show antidepressant effects in a chronic social defeat stress (CSDS) model of depression. Low levels of (2R,6R)-HNK in the brain after i.c.v. infusion of (R)-ketamine were detected, although brain levels of (2R,6R)-HNK were markedly lower than those after i.c.v. infusion of (2R,6R)-HNK. Furthermore, high levels of (2R,6R)-HNK in the blood and liver after i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK were detected. A single i.c.v. infusion of (R)-ketamine showed rapid and long-lasting (7 days) antidepressant effects in a CSDS model. In contrast, i.c.v. infusion of (2R,6R)-HNK did not show any antidepressant effect in the same model, although brain concentration of (2R,6R)-HNK was higher than after i.c.v. infusion of (R)-ketamine. This study suggest that (R)-ketamine in the periphery after washout from the brain is metabolized to (2R,6R)-HNK in the liver, and subsequently, (2R,6R)-HNK enters into brain tissues. Furthermore, it is unlikely that (2R,6R)-HNK is essential for the antidepressant actions of (R)-ketamine in a CSDS model.
    [Abstract] [Full Text] [Related] [New Search]