These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multilayer Functional Tapes Cofired at 450 °C: Beyond HTCC and LTCC Technologies. Author: Varghese J, Siponkoski T, Sobocinski M, Vahera T, Jantunen H. Journal: ACS Appl Mater Interfaces; 2018 Apr 04; 10(13):11048-11055. PubMed ID: 29513520. Abstract: This paper reports the first ultralow sintering temperature (450 °C) cofired multifunctional ceramic substrate based on a commercial lead zirconium titanate (PZ29)-glass composite, which is fabricated by tape casting, isostatic lamination, and sintering. This substrate was prepared from a novel tape casting slurry composition suitable for cofiring at low temperatures with commercial Ag electrodes at 450 °C. The green cast tape and sintered substrate showed a surface roughness of 146 and 355 nm, respectively, suitable for device-level fabrication by postprocessing. Additionally, the ferroelectric and piezoelectric studies disclosed low remnant polarization due to the dielectric glass matrix with average values of piezoelectric coefficient (+ d33) and voltage coefficient (+ g33) of 17 pC/N and 30 mV/N, respectively. The dielectric permittivity and loss value of the sintered substrates were 57.8 and 0.05 respectively, at 2.4 GHz. The variation of relative permittivity on temperature dependence in the range of -40 to 80 °C was about 23%, while the average linear coefficient of thermal expansion was 6.9 ppm/°C in the measured temperature range of 100-300 °C. Moreover, the shelf life of the tape over 28 months was studied through measurement of the stability of the dielectric properties over time. The obtained results open up a new strategy for the fabrication of next-generation low-cost functional ceramic devices prepared at an ultralow temperature in comparison to the high-temperature cofired ceramic and low-temperature cofired ceramic technologies.[Abstract] [Full Text] [Related] [New Search]