These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro activity of azole derivatives and griseofulvin against planktonic and biofilm growth of clinical isolates of dermatophytes. Author: Brilhante RSN, Correia EEM, Guedes GMM, de Oliveira JS, Castelo-Branco DSCM, Cordeiro RA, Pinheiro AQ, Chaves LJQ, Pereira Neto WA, Sidrim JJC, Rocha MFG. Journal: Mycoses; 2018 Jul; 61(7):449-454. PubMed ID: 29517824. Abstract: As shown by recent research, most of the clinically relevant fungi, including dermatophytes, form biofilms in vitro and in vivo, which may exhibit antimicrobial tolerance that favour recurrent infections. The aim of this study was to determine the minimum inhibitory concentrations (MICs) of itraconazole (ITC), voriconazole (VCZ) and griseofulvin (GRI) against Trichophyton rubrum, Trichophyton tonsurans, Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum in planktonic and biofilm growth. For the planktonic form, susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI), document M38-A2, while biofilm susceptibility was evaluated using the XTT colorimetric essay. The planktonic growth of all strains was inhibited, with MIC values ranging from 0.00195 to 0.1225 μg/mL for VRC, 0.00195 to 0.25 μg/mL for ITC and <0.0039 to 4 μg/mL for GRI, while a 50-fold increase in the MIC was required to significantly reduce the metabolic activity (P < .05) of dermatophyte biofilms. In brief, the ability of dermatophytes to form biofilms may be a contributing factor for the recalcitrance of dermatophytoses or the dissemination of the disease.[Abstract] [Full Text] [Related] [New Search]