These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anatomic Predictors of Sagittal Hip and Pelvic Motions in Patients With a Cam Deformity.
    Author: Ng KCG, Lamontagne M, Jeffers JRT, Grammatopoulos G, Beaulé PE.
    Journal: Am J Sports Med; 2018 May; 46(6):1331-1342. PubMed ID: 29517923.
    Abstract:
    BACKGROUND: As there is a high prevalence of patients with cam deformities and no ongoing hip dysfunction, understanding the biomechanical factors predicting the onset of symptoms and degenerative changes is critical. One such variable is how the spinopelvic parameters may influence hip and pelvic sagittal mobility. Hypothesis/Purpose: Pelvic incidence may predict sagittal hip and pelvic motions during walking and squatting. The purpose was to determine which anatomic characteristics were associated with symptoms and how they influenced functional hip and pelvic ranges of motion (ROMs) during walking and squatting. STUDY DESIGN: Controlled laboratory study. METHODS: Fifty-seven participants underwent computed tomography and were designated either symptomatic (n = 19, cam deformity with pain), asymptomatic (n = 19, cam deformity with no pain), or control (n = 19, no cam deformity or pain). Multiple femoral (cam deformity, neck angle, torsion), acetabular (version, coverage), and spinopelvic (pelvic tilt, sacral slope, pelvic incidence) parameters were measured from each participant's imaging data, and sagittal hip and pelvic ROMs during walking and squatting were recorded using a motion capture system. RESULTS: Symptomatic participants had large cam deformities, smaller femoral neck-shaft angles, and larger pelvic incidence angles compared with the asymptomatic and control participants. Discriminant function analyses confirmed that radial 1:30 alpha angle (λ1 = 0.386), femoral neck-shaft angle (λ2 = 0.262), and pelvic incidence (λ3 = 0.213) ( P < .001) were the best anatomic parameters to classify participants with their groups. Entering these 3 parameters into a hierarchical linear regression, significant regressions were achieved for hip ROM only when pelvic incidence was included for walking ( R2 = 0.20, P = .01) and squatting ( R2 = 0.14, P = .04). A higher pelvic incidence decreased walking hip ROM ( r = -0.402, P = .004). Although symptomatic participants indicated a trend of reduced squatting hip and pelvic ROMs, there were no significant regressions with the anatomic parameters. CONCLUSION: A cam deformity alone may not indicate early clinical signs or decreased ROM. Not only was pelvic incidence a significant parameter to classify the participants, but it was also an important parameter to predict functional ROM. Symptomatic patients with a higher pelvic incidence may experience limited sagittal hip mobility. CLINICAL RELEVANCE: Patients with symptomatic femoroacetabular impingement showed a higher pelvic incidence and, combined with a cam deformity and varus neck, can perhaps alter the musculature of their iliopsoas, contributing to a reduced sagittal ROM. With an early and accurate clinical diagnosis, athletes could benefit from a muscle training strategy to protect their hips.
    [Abstract] [Full Text] [Related] [New Search]