These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Author: Zhao P, Li L, Zhou S, Qiu L, Qian Z, Liu X, Cao X, Zhang H. Journal: Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():108-117. PubMed ID: 29519418. Abstract: Multidrug resistance (MDR) has become a very serious problem in cancer therapy. To effectively reverse MDR in tumor treatments, a new pH-sensitive nano drug delivery system (NDDS) composed of mesoporous silica nanoparticles (MSNs) and d-a-tocopheryl poly-ethylene glycol 1000 succinate (TPGS) copolymers was synthesized to deliver doxorubicin (DOX) into drug-resistant breast cancer cell line (MCF-7/ADR). DOX@MSNs-TPGS were characterized to have a single peak size distribution, high DOX loading efficiency and a pH-dependent drug release profile. MSNs-TPGS were internalized via caveolae, clathrin-mediated endocytosis and energy-dependent cellular uptake. The DOX@MSNs-TPGS exhibited 10-fold enhanced cell killing potency compared to free DOX and DOX@MSNs. The enhanced MDR reversal effect was ascribed to the higher amount of cellular uptake of DOX@MSNs-TPGS in MCF-7/ADR cells than that of free DOX and DOX@MSNs, as a result of the inhibition of P-gp mediated drug efflux by TPGS. In vivo studies of NDDS in tumor-bearing mice showed that DOX@MSNs-TPGS displayed better efficacy against MDR tumors in mice and reached the tumor site more effectively than DOX and DOX@MSNs, with minimal toxicity. These results suggest DOX@MSNs-TPGS developed in this study have promising applications to overcome drug resistance in tumor treatments.[Abstract] [Full Text] [Related] [New Search]