These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Degradation rate of DNA scaffolds and bone regeneration.
    Author: Matsumoto A, Kajiya H, Yamamoto-M N, Yanagi T, Imamura A, Okabe K, Fukushima T, Kido H, Ohno J.
    Journal: J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):122-128. PubMed ID: 29521019.
    Abstract:
    Scaffolds implanted into bone defect sites must achieve optimal biodegradation rates while appropriately filling the void as new bone formation progresses. We recently developed a unique biomaterial consisting of salmon deoxyribose nucleic acid (DNA) and protamine, which can be used as an osteoconductive scaffold for tissue engineering. The aim of the present study was to elucidate how the degradation rate of the scaffold affects bone regeneration. We examined the relationships between the degradation rate of salmon DNA scaffolds and new bone formation using a rat skin flank subcutaneous model and rat calvarial defect model. The degradation rates of the scaffolds were proportional to the durations of pretreatment with ultraviolet (UV) light irradiation. The biodegradation rates of the scaffolds were also dependent on the duration of UV irradiation, as tested a subcutaneous tissue implantation. Scaffolds irradiated with UV light for 0.5 h maintained gradual biodegradation of phosphate compared with scaffolds irradiated for 0 or 3 h. In the calvarial defect model, we found that new bone formation was higher in rats treated with scaffolds irradiated with UV light for 0.5 h compared with those irradiated with UV light for 0 or 3.0 h. The present results suggest that bioengineering of scaffolds for biodegradation is important to regenerate bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 122-128, 2019.
    [Abstract] [Full Text] [Related] [New Search]