These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs.
    Author: Liu Y, Liu K, Li X, Xiao S, Zheng D, Zhu P, Li C, Liu J, He J, Lei J, Wang L.
    Journal: Mater Sci Eng C Mater Biol Appl; 2018 May 01; 86():28-41. PubMed ID: 29525094.
    Abstract:
    The application of non-toxic carriers to increase drug loading, multi-drug delivery, and extremely small size of nano-drugs to construct a tremendous transmission system is the goal for all researchers to be pursued. The proposal of natural pectin nano-platform for delivery of multiple drugs is critical for biomedical research, especially a particle size of below 100nm with high yield. Here we design a new core-shell structure pectin-eight-arm polyethylene glycol-ursolic acid/hydrooxycampothecin nanoparticle (Pec-8PUH NPs) through a special self-assembly method for stabilizing and dispersing particles, improving water-solubility, and achieving drug controlled release. The obtained Pec-8PUH NPs possessed appropriate size (~91nm), drug-loaded efficiency and encapsulation efficiency through the regulation of eight-arm polyethylene glycol. In addition, Pec-8PUH NPs could enhance cell cytotoxicity, shorten blood retention time (7.3-fold UA, 7.2-fold HCPT) and more effective cellular uptake than free drugs, which exhibited an obvious synergistic effect of UA and HCPT by the co-delivery. 4T1 tumor-bearing mice also showed a higher survival rate than free UA and free HCPT. The result further shows that this novel drug delivery system has a promising potential for anti-cancer combination therapy.
    [Abstract] [Full Text] [Related] [New Search]