These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: miR-296-3p Negatively Regulated by Nicotine Stimulates Cytoplasmic Translocation of c-Myc via MK2 to Suppress Chemotherapy Resistance. Author: Deng X, Liu Z, Liu X, Fu Q, Deng T, Lu J, Liu Y, Liang Z, Jiang Q, Cheng C, Fang W. Journal: Mol Ther; 2018 Apr 04; 26(4):1066-1081. PubMed ID: 29525743. Abstract: This study aimed to identify mechanisms by which microRNA 296-3p (miR-296-3p) functions as a tumor suppressor to restrain nasopharyngeal carcinoma (NPC) cell growth, metastasis, and chemoresistance. Mechanistic studies revealed that miR-296-3p negatively regulated by nicotine directly targets the oncogenic protein mitogen-activated protein kinase-activated protein kinase-2 (Mapkapk2) (MK2). Suppression of MK2 downregulated Ras/Braf/Erk/Mek/c-Myc and phosphoinositide-3-kinase (PI3K)/Akt/c-Myc signaling and promoted cytoplasmic translocation of c-Myc, which activated miR-296-3p expression by a feedback loop. This ultimately inhibited cell cycle progression, epithelial-to-mesenchymal transition (EMT), and chemoresistance of NPC. In addition, nicotine as a key component of tobacco was observed to suppress miR-296-3p and thus elevate MK2 expression by inducing PI3K/Akt/c-Myc signaling. In clinical samples, reduced miR-296-3p as an unfavorable factor was inversely correlated with MK2 and c-Myc expression. These results reveal a novel mechanism by which miR-296-3p negatively regulated by nicotine directly targets MK2-induced Ras/Braf/Erk/Mek/c-Myc or PI3K/AKT/c-Myc signaling to stimulate its own expression and suppress NPC cell proliferation and metastasis. miR-296-3p may thus serve as a therapeutic target to reverse chemotherapy resistance of NPC.[Abstract] [Full Text] [Related] [New Search]