These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition.
    Author: Díez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N.
    Journal: Neuroimage Clin; 2018; 17():847-855. PubMed ID: 29527489.
    Abstract:
    The objective was to assess dynamic functional connectivity (FC) and local/global connectivity in Parkinson's disease (PD) patients with mild cognitive impairment (PD-MCI) and with normal cognition (PD-NC). The sample included 35 PD patients and 26 healthy controls (HC). Cognitive assessment followed an extensive neuropsychological battery. For resting-state functional MRI (rs-fMRI) analysis, independent component analysis (ICA) was performed and components were located in 7 networks: Subcortical (SC), Auditory (AUD), Somatomotor (SM), visual (VI), cognitive-control (CC), default-mode (DMN), and cerebellar (CB). Dynamic FC analysis was performed using the GIFT toolbox. FC differences between groups in each FC state were analysed with the network-based statistic (NBS) approach. Finally, a graph-theoretical analysis for local/global parameters was performed. The whole sample showed 2 dynamic FC states during the rs-fMRI. PD-MCI patients showed decreased mean dwell time in the hypo-connectivity state (p = 0.030) and showed increased number of state transitions (p = 0.007) compared with the HC. In addition, in the hypo-connectivity state, PD-MCI patients showed reduced inter-network FC between the SM-CC, SM-VI, SM-AUD, CC-VI and SC-DMN compared with the HC (p < 0.05-FDR). These FC alterations in PD-MCI were accompanied by graph-topological alterations in nodes located in the SM network (p < 0.001). In contrast, no differences were found between the PD-NC and HC. Findings suggest the presence of dynamic functional brain deteriorations in PD-MCI that are not present in PD-NC, showing the PD-MCI group dynamic FC dysfunctions, reduced FC mostly between SM-CC networks and graph-topological deteriorations in the SM network. A dynamic FC approach could be helpful to understand cognitive deterioration in PD.
    [Abstract] [Full Text] [Related] [New Search]