These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Author: Liu C, Wang C, Zhao Q, Li X, Xu F, Yao X, Wang M. Journal: Biomed Mater; 2018 May 04; 13(4):044107. PubMed ID: 29537390. Abstract: Electrospun fibrous scaffolds have been extensively used as cell-supporting matrices or delivery vehicles for various biomolecules in tissue engineering. Biodegradable scaffolds with tunable degradation behaviors are favorable for various resorbable tissue replacements. In nerve tissue engineering, delivery of growth factors (GFs) such as nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) from scaffolds can be used to promote peripheral nerve repair. In this study, using the established dual-source dual-power electrospinning technique, bicomponent scaffolds incorporated with NGF and GDNF were designed and demonstrated as a strategy to develop scaffolds providing dual GF delivery. NGF and GDNF were encapsulated in poly(D, L-lactic acid) (PDLLA) and poly(lactic-co-glycolic acid) (PLGA) nanofibers, respectively, via emulsion electrospinning. Bicomponent scaffolds with various mass ratios of GDNF/PLGA fibers to NGF/PDLLA fibers were fabricated. Their morphology, structure, properties, and the in vitro degradation were examined. Both types of core-shell structured fibers were evenly distributed in bicomponent scaffolds. Robust scaffolds with varying component ratios were fabricated with average fiber diameter ranging from 307 ± 100 nm to 688 ± 129 nm. The ultimate tensile stress and elastic modulus could be tuned ranging from 0.23 ± 0.07 MPa to 1.41 ± 0.23 MPa, 11.1 ± 3.0 MPa to 75.9 ± 3.3 MPa, respectively. Adjustable degradation was achieved and the weight loss of scaffolds ranged from 9.2% to 44.0% after 42 day degradation test. GDNF and NGF were incorporated with satisfactory encapsulation efficiency and their bioactivity were well preserved. Sustained release of both types of GFs was also achieved.[Abstract] [Full Text] [Related] [New Search]