These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. Author: Kowalczykowski SC, Krupp RA. Journal: J Mol Biol; 1987 Jan 05; 193(1):97-113. PubMed ID: 2953903. Abstract: The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution prior to the addition of RecA protein, a significant inhibition of ATPase activity is observed. Also, when SSB protein is added after the formation of a RecA protein-single-stranded DNA complex using either etheno M13 DNA, poly(dA) or poly(dT), or using single-stranded phage M13 DNA at lower temperature (25 degrees C) and magnesium chloride concentrations of 1 mM or 4 mM, a time-dependent inhibition of activity is observed. These results are consistent with the conclusion that SSB protein displaces the RecA protein from these DNA substrates, as described in the accompanying paper. However, if SSB protein is added last to complexes of RecA protein and single-stranded M13 DNA at elevated temperature (37 degrees C) and magnesium chloride concentrations of 4 mM or 10 mM, or to poly(dA) and poly(dT) that was renatured in the presence of RecA protein, no inhibition of ATPase activity is observed; in fact, a marked stimulation is observed for single-stranded M13 DNA. A similar effect is observed if the bacteriophage T4-coded gene 32 protein is substituted for SSB protein. The apparent stoichiometry of DNA (nucleotides) to RecA protein at the optimal ATPase activity for etheno M13 DNA, poly(dA) and poly(dT) is 6(+/- 1) nucleotides per RecA protein monomer at 4 mM-MgCl2 and 37 degrees C. Under the same conditions, the apparent stoichiometry obtained using single-stranded M13 DNA is 12 nucleotides per RecA protein monomer; however, the stoichiometry changes to 4.5 nucleotides per RecA protein monomer when SSB protein is added last. In addition, a stoichiometry of four nucleotides per RecA protein can be obtained with single-stranded M13 DNA in the absence of SSB protein if the reactions are carried out in 1 mM-MgCl2. These data are consistent with the interpretation that secondary structure within the natural DNA substrate limits the accessibility of RecA protein to these regions. The role of SSB protein is to eliminate this secondary structure and allow RecA protein to bind to these previously inaccessible regions of the DNA.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]