These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ventral Striatal D2/3 Receptor Availability Is Associated with Impulsive Choice Behavior As Well As Limbic Corticostriatal Connectivity.
    Author: Barlow RL, Gorges M, Wearn A, Niessen HG, Kassubek J, Dalley JW, Pekcec A.
    Journal: Int J Neuropsychopharmacol; 2018 Jul 01; 21(7):705-715. PubMed ID: 29554302.
    Abstract:
    BACKGROUND: Low dopamine D2/3 receptor availability in the nucleus accumbens shell is associated with highly impulsive behavior in rats as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the nucleus accumbens is equally linked to intolerance for delayed rewards, a related form of impulsivity. METHODS: We investigated the relationship between D2/3 receptor availability in the nucleus accumbens and impulsivity in a delay-discounting task where animals must choose between immediate, small-magnitude rewards and delayed, larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high and low impulsivity using in vivo [18F]fallypride positron emission tomography and ex vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. RESULTS: Delay-discounting task impulsivity was inversely related to D2/3 receptor availability in the nucleus accumbens core but not the dorsal striatum, with higher D2/3 binding in the nucleus accumbens shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high- vs low-impulsive rats. CONCLUSIONS: We conclude that delay-discounting task impulsivity is associated with low D2/3 receptor binding in the nucleus accumbens core. Thus, two related forms of waiting impulsivity-premature responding and delay intolerance in a delay-of-reward task-implicate an involvement of D2/3 receptor availability in the nucleus accumbens shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction, and other psychiatric disorders.
    [Abstract] [Full Text] [Related] [New Search]